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ABSTRACT

The design and evaluation of a feedback control system via frequency response methods relies heavily

upon numerical methods. In application, one can usually develop low-order simulation models
which for the most part are devoid of numerical problems. However, when complex feedback inter-

actions, for example, between instrument control systems and their flexible mounting structure,
must be evaluated, simulation models become moderate to large order and numerical problems
become common. The fundamental reason for this is that as system order enters the range of about

20 to 200, many popular tried and true methods are subject to severe numerical problems. An

attempt is made in this paper to summarize a large body of relevant numerical error analysis litera-

ture in a language understandable to nonspecialists. The intent is to provide engineers using simula-

tion models with an "engineering feel" fo r potential numerical problems without getting intertwined

in the complexities of the associated mathematical theory. Guidelines are also provided by suggesting
alternate state-of-the-art methods which have good numerical evaluation characteristics.
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PITFALLS AND GUIDELINES
FOR THE NUMERICAL EVALUATION

OF MODERATE-ORDER SYSTEM
FREQUENCY RESPONSE

Harold P. Friscll

Goddard Space Flight Center

Greenbelt, Maryland

INTRODUCTION

The NASA large space system technology (LSST) program is attempting to develop an interactive
integrated analysis capability (IAC). The objective is to provide engineers with an interdisciplinary

analysis capability supportive of static, time, and frequency domain design and performance evalua-

tion methods. In order to achieve this objective, standard analysis methods must be critically

evaluated to determine their suitability for moderate- and large-order system response analysis.

Unsuitable methods must be flagged and improved methods developed.

Most frequency domain analyses are adequately carried out with low- to moderate-order systems;

i.e., systems of order 20 or less. Unfortunately, low- to moderate-order systems are not always

adequate; for example, in assessing the cross-coupling effects between two or more on-board in-

strument control systems via spacecraft system flexibility. Systems such as this require moderate-

to large-order system models. Within the context of this report, systems of order between about 20

and 200 are considered to be moderate to large order. In practical application, systems of larger

order are usually not required if good engineering judgment is used in setting up the simulation

model. When systems of an order higher than 200 are required and standard algorithms are used,

resultant computing problems will normally be inordinate due to excessive run-time, memory

requirements, and round-off error buildup. Solutions in these cases are usually only possible if

specialized techniques are carefully used.

This paper is primarily concerned with the numerical methods used to set up and evaluate the
"transfer function" of single variable feedback control theory and the "transfer function matrix" of

multivariable feedback control theory. The remarks to be made apply to transfer functions written

with respect to either the Laplace transform variable s (continuous time systems) or to the Z-trans-
form variable z (discrete and sampled data systems).

It will be shown, by presenting the results of a few simple numerical experiments, that commonly
used numerical methods, while excellent for low-order systems, begin to break down in an unpre-

dictable manner as system order increases. To avoid this problem, alternate methods are presented

which can be reliably used for moderate- to large-order systems.



It is assumed that transfer functions stem from a physically realizable, well-conditioned system. A

well-conditioned system is defined as one for which slight perturbations in the system's physical

characteristics (mass, geometry, feedback gains, etc.) produce correspondingly slight changes in
resultant frequency response characteristics. An unstable system is a well-conditioned system if

slight perturbations in its physical characteristics make it slightly more or less unstable. Ill-condi-

tioned systems are of minimal importance in application, and therefore are not discussed herein. Ill-

conditioned systems should be redesigned rather than analyzed.

The intent of this paper is to summarize, from the theory of condition, information which can be

used to expose potential pitfalls, and to provide guidelines for selecting numerically reliable methods.

BACKGROUND

The historical starting point for the subject of numerical error analysis is usually marked by Refer-

ence 33, the 1947 yon Neumann and Goldstine paper "Numerical Inverting of Matrices of High

Order." It is an interesting historical note that in 1947 "high order" referred to matrices of order

greater than or equal to 10, and "unusually large order" referred to order greater than 100 (Refer-

ence 33, pages 1022 and 1031). In addition to its historical interest, the discussion in its first

chapter on the sources of error in a computation provides the framework from which a discussion

of "condition" can conveniently begin. Four primary sources of error are enumerated: (1) Approxi-

mations implied by the mathematical model; (2) Errors in observational data, (3) Finitistic approxi-

mations to transcendental and implicit mathematical formulations; and (4) Errors associated with

computing instruments (e.g., round-off errors in digital computation).

In their paper, yon Neumann and Goldstine state that their follow-on development pertains only to

errors of the fourth type. Their objective was to establish rigorous error estimates with respect to

fixed point digital computation round-off error for the matrix inversion problem. This they do via
a long and difficult development, which is reviewed in Reference 34 by Wilkinson. It is pointed out

therein that the complexity of the yon Neumann and Goldstine development effectively stymied

follow-on research in numerical error analysis for the following decade. This situation existed until
Givens, in Reference 13, recognized that round-off errors generated during the course of computa-

tion could be interpreted as equivalent perturbations on observational data. Furthermore, associated

perturbation bounds could be established and computed quantities taken as exact solutions to the

problem defined by the perturbed set of observational data. Nearly all recent analysis makes use of

this approach. It has the advantage that round-offerrors are placed on the same footing as errors in

input data specification, the effect of which is usually considered during the course of a system

analysis. This approach is generally referred to as backward error analysis.

In concept, "condition" starts with a computing problem. It then asks the following question: If

the initial data to the computing problem is perturbed by a given amount, how much will the com-

puted solution differ from the exact solution to the unperturbed problem? If small perturbations in
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the initial data lead to correspondingly small perturbations in computed results the computing

problem is considered to be "well-conditioned." If small perturbations in the initial data lead to

large perturbations in computed results the computing problem is considered to be "ill-conditioned."

Beyond this point, theory becomes complicated by subtle differences in approach and by the

recognition that for multi-output computing problems; e.g. eigenanalysis, part of the output may be

well-conditioned, while the rest may be either ill-conditioned or almost ill-conditioned.

A general theory of condition is presented in Reference 25 by Rice. In that reference, Rice at-

tempts to analyze the way in which an uncertainty (perturbation) in the initial data propagates to

an uncertainty in the solution of the system of equations. While the results presented by Rice can

be applied to computational problems, they cannot be construed to fonn a theory of the condition

of a computation (see Reference 25, page 288).

Before one erroneously links round-off error and ill-conditioning together, it is important to point

out that ill-conditioning exists independently of round-off error effects and that its intrinsic nature

is unaffected by various schemes for round-off error control. The link between round-off error and

ill-conditioning comes about after the decision is made to view the accumulated effects of round-off

error as a perturbation on observational data.

Wilkinson applies this point of view in his discussions on ill-conditioned problems in Reference

35. On page 28 he defines a computing problem as ill-conditioned if very small relative perturba-

tions in the parameters make comparatively large errors in the solutions.

Steward, in Reference 28, page 76, defines a "stable algorithm" as an algorithm which yields a

solution which is near the exact solution to the slightly perturbed problem. For ill-conditioned

problems, the exact solution of the perturbed problem may not be near the exact solution of the

unperturbed problem and thus, even though a stable algorithm is used to solve an ill-conditioned

problem, the computed solution and the exact solution need not agree at all. When applied to a

well-conditioned problem, errors introduced by the stable algorithm are no more than are warranted
by the data.

The motivation for this paper stems primarily from the need to obtain transfer functions of moder-
ate- to large-order systems and the following statement by Wilkinson in Reference 34, page 565. In

effect it says that certain instinctive methods for setting up and evaluating transfer functions should
be avoided:

"Perhaps the most important lesson that has been learned is the rather negative one, that in

general it is undesirable to reduce implicit polynomial equations, particularly determinantal

equations, to explicit polynomial form. Such a reduction is superficially attractive both

because of the formal simplicity of the explicit form and because there is a natural tendency

to think that 'we know all about polynomials.' Commonly a catastrophic worsening of the
condition of the problem takes place."
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The objective of this paper is to explore the dilemma brought about by the fact that the instinctive

and most commonly used method for obtaining transfer functions is "by reducing implicit polyno-

mial equations, particularly determinantal equations, to explicit polynomial form." This exploration

is to be done via numerical examples designed to provide the engineer with some insight as to how
far instinctive methods can be reliably used, and then to define what should be done when the

instinctive methods begin to numerically fail.

POLYNOMIAL AND RATIONAL FORMS FOR TRANSFER FUNCTIONS

Virtually all frequency-response methods (see Reference 19) require transfer functions to be defined
as rational functions in the form:

Pm (X)
R (x) - (1)

On (x)

where the degree m of the numerator polynomial Pm (x) is less than or equal to the degree n of the
denominator polynomial Qn(X). Multivariable methods require transfer function matrices to be
defined as rectangular matrices of rational functions. These normally are expressed in the form:

N (x)
G (x) = _ (2)

d (x)

where N(x) is a rectangular matrix of polynomials and d(x) is the polynomial which is the least
common denominator of all elements in G(x).

If the frequency response analysis is pursued analytically, the polynomials contained in equa-
tions 1 and 2 may be expressed in a variety of equivalent forms, whichever is most convenient for

the follow-on analytic development. However, if the need for numerical evaluation is on the

bottom line, it must be recognized that the evaluation properties of equivalent polynomial forms

differ drastically relative to each other. (Refer to Rice, Reference 24 and Gautschi, Reference 12

for an in-depth study.) In summary, Rice, Gautschi, Wilkinson (in Reference 35), and several other
authors conclude that polynomials expressed in the "root product" form, that is"

n

V (x) = A n -V_ (x-zi) (3)
i=l
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are comparatively well-conditioned relative to polynomials expressed in the "nested" or "power
series" form, that is:

P (x) = ('" "((A x+An.l)X+An.2)x+" "'+AI)x+A 0 (4)
n

= E Ai Xi
i=0

For frequency response analysis, this is not the end (see Wilkinson, Reference 35, page 47). In
nearly all frequency response problems, neither the zeros of equation (3) nor the coefficients of

equation (4) can be considered as primary system definition data. Therefore, the problem of

determining whether or not these parameters have been evaluated with an accuracy sufficient for

the numerical evaluation of the system's "true" frequency response characteristics must also be
considered.

The following portion of this section explores this problem by presenting the results of a numerical

experiment. The experiment and data presentation format has been structured to provide insight;
the actual numeric magnitudes are of minimal importance. In fact, if the experiment were to be
repeated on a different computer with different precision, a one-for-one correlation would not be

expected. The important point is that computational problems can develop rapidly, as system order
increases for certain classes of problems.

Methods used to compute roots for the root product form will not be explored. If roots are obtained

via the EISPACK eigenanalysis methods provided in Reference 27 and if primary system definition

data is used to define associated matrix coefficients, then, since all algorithms given therein are

stable, errors involved in the computation of eigenvalues are no more than are warranted by the

system definition data. Refer to the relevant papers collected in Reference 36 for details; nearly all

EISPACK routines are based upon the ALGOL procedures presented and developed therein.

The power series form for polynomials is a favorite in controls analysis. Coefficients are easily

computed and zeros obtainable via application of a variety of stable, well-established polynomial

root-finding algorithms; e.g. RPOLY (Reference 15). Unfortunately, the use of a stable algorithm is

no guaranty that accurate results will be obtained for an ill-conditioned computing problem. As
system order increases, polynomial coefficients can only be computed with a finite degree of

accuracy on any computing system, i.e., to machine precision. This limit on achievable accuracy,
when viewed as a perturbation on input data, leads to errors in computed results which far exceed

that warranted by the imprecision associated with the computed polynomial coefficients.

In order to illustrate this point in a manner which will provide some physical intuition, two test

problems are chosen: first, a hypothetical non-oscillatory system; and second, a hypothetical
damped oscillatory system.



Non-Oscillatory System

Let:

(X+X_)(X+X2)(''')(X+X N) = 0 (5)

where _'i = I, 2, • • ", N define the first system.

Damped Oscillatory System

Let:

2 ) = 0 (6)2)(X 2 +2_.co 2 X+co_)(--')(X 2 +2_'co N X+co N(X 2 + 2_'coI X + coI

where coi = 1,2," • ",N and0_< _'_<1 define the second.

In actuality, many values of _"have been examined, however results are only presented for _" =
.0001, .9, and 1.0. For insight purposes, this is sufficient. Results for other values off are obtain-

able, approximately, from an exponential curve fitted between the three relevant points provided.

Procedure

Step 1. Utilizing floating point double precision arithmetic, compute the coefficients to the power

series equivalents of equations 5 and 6. Use N = 2, 3, • • -, 25 for equation 5, and N = 2, 3, • " ", 19

for equation 6 and the values of _"stated above.

Step 2. Transfer with full precision the coefficients for each polynomial into tile zero-finding

algoritl_m. The algorithm used was an in-house variation of the popular Jenkins and Traub algo-

rithm RPOLY given in Reference 15 and discussed in Reference 16. To check root quality, all

inputted coefficients must be reproducible to 7 digits accuracy with the computed zeros. If not, an

error flag is automatically set prior to subroutine exit. In all cases presented herein, successful

quality checks were obtained.

Step 3. Compute the number of digits in agreement between computed and exact solutions via the

equation:

d = -lOglo(-_e c) (7)
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where:

e = exact solution

c = computed solution

d = number of digits in agreement

All computed zeros are arranged in increasing order of magnitude and compared with the exact

solutions which are also arranged in increasing order of magnitude.

All results are presented in Tables 1 through 8, in matrix format. The element dnj in row n column
j is to be interpreted as meaning that "the j-th zero in increasing order of magnitude of the polyno-

mial of degree n has been computed with dnj digits of accuracy." If d j _> 15.7 this is to be inter-
preted to imply exact agreement. All results were obtained from an IBM 360-91, using 64 bits
for double precision computation.

A full set of analogous results was also obtained by using the EISPACK (Reference 27) eigenvalue
finding algorithms. In theory, the eigenvalues of the companion matrix (Frobenius form) to the

associated characteristic polynomial equal the zeros of the polynomial. In actuality, eigenvalues

computed via the QR-algorithm were inferior in quality to the zeros computed via the polynomial
root-finding algorithm. However, they were surprisingly good, considering the enormous spread in

magnitude of the non-zero elements in the companion matrix. This observation is in agreement

with round-off error analysis theory (see Reference 37, pages 432-434 and Reference 14, pages
147-148).

Tables 1 and 2 present results associated with equation 5. This is a favorite example in the literature; it

has been studied by Gautschi (Reference 12, page 410) and Wilkinson (Reference 37, page 418). In

Table 1 it is noted that there is a steady deterioration in computational accuracy, as system order

increases from 2 through 25. Twenty (20) marks the point at which computed results deviate

significantly enough from the exact for false conclusions to be a real problem. Up to N = 22, all

computed roots are real, as they should be, as shown in Table 2. For N = 23 and beyond, some

adjacent real roots are computed incorrectly as complex pairs. This phenomenon is well-known,
and reported also in Reference 37.

Tables 3 and 4 present results associated with equation 6 for _"= .0001. This is the case of a nearly

undamped system. It is evident from the results presented that both real and imaginary parts of all

zeros are computed to a surprisingly high degree of accuracy for polynomials up to degree 38. An

important point which is not obvious from the tables is that in all cases the real part of each zero is
computed with the correct sign.

Tables 5 and 6 present results associated with equation 6 for _"= .90. These results are intended to

provide data at the approximate point at which a breakdown in computational ability becomes

significant, that is, when system roots approach coincidence in the complex plane or, in engineering
terms, when the damping associated with system frequencies approaches "critical."



Table 1 - Root 1,2,..., N
MATRIX CL_MENT_ = -DLOGI0((LXACT - CUMPUTED}/EXACT}; REAL PARTS OF PULYRT COMPUTED RUbTS

( 1) ( 2} ( 3) ( _) ( 5} (6) ( 7) { _} ( 9) (10) (11) (12} ( 13} (14) ( 15} (16} (17) (1_) (lg} (20}

2 1 15.7 15.7

3 1 15.7 15.7 15._

4 1 15.1 1406 I_05 15.0

5 1 15.7 14.g 14.7 150b 15.2

b 1 ib._ 13.8 13.1 12.7 12.7 15.2

7 1 15.2 13.3 12.b 12o2 12.1 12o2 12._

5 I 14.4 13.b 13.0 12.5 12.0 12.g 12.5 12.9

9 1 15o4 14ol l_.b ll.d 11o2 10o9 10._ 11.0 ll.b

10 1 Ib._ 13.7 12.4 11.5 10.9 lO.b 10.4 10.5 10.9 11.6

11 1 15.0 13.3 1109 11o0 10.4 I0.0 4.7 9.6 9.7 10.1 10.8

12 I I_.9 12.7 11.3 1003 _.b 9.1 8.5 6.b 8,7 8.9 9.4 I0.3

13 I 15.0 12o8 11.4 10.5 9.9 9.6 9.9 8.8 6.4 8.4 B.6 9.0 9,9

O0

14 1 140o 12.6 11.1 10._ 9ol 8.5 d.1 7.8 7.8 8.0 9.1 8.0 8.8 9.O

15 1 14.9 12.4 11.1 I0.0 9.2 _.7 _.4 g.4 7.8 7.4 7.3 7.4 _.5 8.3 _.2

16 1 14.5 12o5 11.0 9.9 5.9 e.1 7._ 7ol O.5 b.7 0.7 O.9 7.2 7.5 8.0 8.6

17 1 la._ 12.9 lO.d 9.4 804 7._ _.5 b.3 5.9 $.b 5.4 5.3 5.4 5.7 6.2 0.8 7.9

15 1 14.4 12.5 10.9 I0.0 8.7 7.3 _.3 5.6 5.0 406 4.3 4.1 4oi 4.2 4.4 4.8 5.5 6.4

Ig 1 I_.5 12.2 10.b 9.1 _.0 7.1 b.4 5.9 5.b 5._ 5.2 4°9 4.5 4.3 4.3 4o5 4._ 5.3 6.3

20 1 14o4 12o3 907 8.6 7.7 7.0 6.4 5.8 5.2 4._ 4.5 4.7 4.3 3.7 3.5 3.5 30b 4.0 4.b 5.5

_1 1 130_ ll.b 904 5.1 b.9 C.O 5.1 4.4 3._ 3.2 2.8 2.4 2.2 2,0 2.0 2.0 2.2 2.6 3.0 3.7
21 21 4.7

2_ I 14o5 11.0 9.3 8.0 6.8 5.9 5.3 4.9 4.7 3.b 3.0 2.7 2.7 409 2.3 1.9 l.g 2.0 2.2 2.7
22 21 3.4 4.4

23 1 13.b 12.0 903 7.9 606 505 4.5 3.7 3.0 204 2.0 1.5 1.3 1.6 1.4 1.5 1.5 1.5 1.7 1.5

24 1 14.1 I_.3 10.5 7.9 o.5 5.5 4.3 _.5 2.5 203 1.5 1.7 2.1 1.5 1o3 1.6 Io5 i.4 1._ 1.8
_4 21 _.2 2.1 20b 3.5

25 1 14.0 11.4 9.7 7.9 6.5 5.4 4.4 2.b 3.0 2.4 1.7 1.4 10_ 1.3 1._ 1.3 1.6 1.5 1.4 1.8
25 _1 1.4 _.3 l.b 1.9 30Z



MAIRIX _LLMEhI3 = -DLUulJ((LXACT - CUMPUTE_)/_XACT); IMAGINARY PARIS OF POLYR[ COMPUI:9 RODT5

t 1) t _) t 3) t _) t 5) 1 b) { T) 1 _) t 9) 1101 t111 (121 113) t1_1 1151 {lb) {171 {16) (191 120)

2 1 15.7 15.7

J 1 Ib.7 15.7 15.7

4 1 lo.7 15.7 15.7 15.7

5 I 15.7 15.7 15.7 15.7 15.7

b I 15.7 15.7 15.7 15.7 15.7 15.7

7 I 15.7 15.7 15.7 15.7 15.7 15.7 15.7

I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

9 I 15.7 15.7 15.7 15.7 Ib.7 15.7 15.7 15.7 15.7

IO I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

11 I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

12 I 15.1 Ib.7 Io.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

13 I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15,7 15e7 15.7 15.7

14 I 15.7 15,7 15.7 15.7 15.7 15,7 I_.7 15*7 15.7 15,7 15.7 15.7 15.7 15.7

15 I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

16 1 15.7 15.7 Ib.7 15.; 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

17 i 15.7 15.7 15.7 Ib.7 15.7 15.7 Ib.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

18 I lo.7 15.7 15.7 15.7 Ib.7 15.7 15,7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

19 I 15.7 15.7 Ib.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

20 I 15.7 15,7 15.7 15.7 15.7 15.7 15.? 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

Zl 1 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
21 21 15.7

22 I I_.7 15.7 15.7 Ib.7 I_.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15-7 15.7 15.7 15.7 15.7 15.7
Z2 21 15.7 15.7

23 I 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 0.5 0.5 0.I 0.1 0.0 0.0 0.I 0.I 0.5
23 21 b.5 15,7 15.7

24 1 15.7 lb.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 0.2 0.2 0.0 0.0 0.0 0.0 15.7
24 _1 Ib.7 1_.7 12.7 15.7

25 I 15.7 15.7 12.7 15.7 I_.7 15.7 15.7 15.7 15.7 i_.7 15.7 15.7 0.1 0.1 0-0 0.0 0.0 0.0 0.0 0.0
25 21 O,u 0.0 0.o O.b 15.7



Table 3 - _"= .0001

NATRIX ELEMENTS = -DLOG10| (EXACT - COMPUTED)/EXACT); REAL PARTS OF POLYRT COMPUTED RUuTS

( 11 (2) ( 3) I 4) ( S) ( 61 (7) ( _1 ( 91 (101 (111 112) ( 131 (14) (IS) (161 (171 (181 (lgl (20}

4 I 15.9 15.g 15.9 15o9

b 1 10.2 16o2 11.4 11.4 11.5 11.5

8 I 15.7 15.7 11.9 11.9 llod 11.8 12o3 12.3

I0 1 1505 15.5 12o2 12.2 12.0 12.0 12.3 12o3 120g 12.g

12 I 15.0 1506 12.4 12o4 12.1 12.1 12o2 12o2 12.7 12.7 13.5 13.5

14 1 14.8 14.8 12.5 1205 12o2 12o2 12.3 12.3 12,5 12o5 11.0 11.0 11.1 11.1

16 1 15o5 Ib.5 1_.6 1206 12.3 12o3 12.3 12.3 12.6 12.6 9.2 902 g.o 9.0 904 904

18 1 lb.l 15.1 12o7 12.7 12.3 12.3 1202 12.2 12o5 12.5 9.0 9.0 b.7 807 8.8 8.8 9.4 9.4

20 I 15oi 15ol 12.7 12.7 12o3 1203 12.4 12.4 12.9 12.9 9*2 9.2 _08 8.8 8.9 8.9 9.4 9.4 10.5 I006

22 I 15.3 15.3 12o7 12.T 12.3 1203 12.1 12.1 1107 11o7 9e3 903 d.9 809 808 808 g.1 901 907 907
0 22 21 10o9 10o9

24 I 15,1 1501 12o5 12o8 12o4 12o4 1201 12ol 11o5 11o5 905 905 804 804 800 800 709 709 8.0 800
24 21 Uo_ 504 902 9.2

26 I 1501 15ol 120d 1208 12o4 12o4 12o4 12o4 12,2 12o2 9o6 900 800 800 705 705 702 702 703 703
26 21 7.0 7.6 e.1 e.1 9.0 9.0

2d 1 15.J 15.3 12.J 12.d 12.4 12.4 12.7 12o7 11o2 11.2 9.6 9.6 T.8 r.d 7.1 7.1 608 6.8 6.8 608
28 21 7.0 7.0 70T 7.7 _.O 8.0 _.3 8.3

30 I 15*_ 15.2 12.9 12-9 12.6 12o6 12.2 12.2 II.I I101 9.6 9.b 7.6 7.6 60g 609 0o6 606 0°5 605
30 21 bob 6.6 ,oh 6.d 7.3 7.3 7.9 7.9 8.8 d.8

32 1 15o4 15.4 12.5 120d 12.4 12.4 12o7 1207 11.2 11.2 906 9.b 705 705 607 6.7 604 6.4 602 602
32 21 602 6.2 6°4 6.4 6.d 6.8 703 7.3 d.O 8.0 809 809

34 1 15.2 15.2 12°d 12._ 12.5 12.5 12.1 12.1 11°0 11.0 907 9°7 7.4 7.4 606 606 6.2 602 6.0 600
34 21 b.O 0°0 b.1 6.1 b.b 6.b 7.0 7.0 6.8 608 7ol 7.1 7.9 7.9

Jb 1 15.1 1_.1 12.d 12.8 12.3 12.3 12.8 12.8 11.1 11.1 9.8 9._ 702 7.3 6._ 6.5 6.1 6.1 5.5 508
36 _1 5. b 508 5.9 5.9 b.l 6*1 6.5 6o5 7°7 7.7 7.2 702 704 7.4 802 8.2

38 1 15.2 15.2 12.9 12.9 13.2 1_02 11o8 11._ 11o3 11.3 10.1 10.1 7.2 To2 604 0.4 6.0 600 507 507
3_ 21 5°7 5.7 7°2 702 5.4 5.4 5.1 5.1 5ol 5.1 5.4 5.4 5.b 5.8 6.4 604 705 7.5



Table 4 - _ = .0001

_ATkIX ELEMENTS = -DLGGIO((EXACT - CGMPUTED}/EXACT); IMAGINARY PARTS OF POLYRT COMPUTED ROOT:

( I} ( 2} ( 3} ( _} ( 51 ( bJ ( 7J { _) (9) (I0} (11} ( 12} ( 13} (14) (15) (Ib} (17} {18} (19} (20}

4 I 15.7 15.7 15.1 15.7

b 1 15.7 15.7 15.7 15.7 15.7 15.7

8 1 15.7 15.7 lb.O 16.0 15.5 15.5 15.7 15.7

I0 1 15.7 15.7 15.7 15o7 1501 15.1 15.6 15.6 15o9 15o9

12 1 15.7 15.7 15.3 15.3 14o9 14o9 15o7 1507 1406 14.8 15.1 15.1

14 1 15J7 15.7 1502 1502 1405 14o5 1402 1402 1400 14o0 14o0 1400 14.5 1405

lb I 1b.7 150 7 14.8 14.8 14.5 1405 14.5 14o5 130d 130_ 13o4 13.4 1304 1304 1308 13.8

18 I 15o7 15.7 140_ 14.8 13.9 13.9 1303 13.3 12o9 12.9 12o6 12o6 12o6 12oh 12o8 12o8 1305 13.5

20 1 15o4 15o4 15o7 15o7 14.0 14.0 13oj 13o3 13ol 1301 13,a-1304 12o3 12o3 12ol 12ol 12o3 12o3 1209 12.9

22 I 15.2 15o2 14o7 14o7 14o7 14.T 13o7 13o7 12,8 12o8 12o2 12o2 12.0 12,0 12,0 12,0 12ol 12ol 12o4 12.4
22 21 13o0 13o0

24 I 15.2 15o2 14.8 14.8 14.2 14o2 I3ob 13ob 12o5 12o5 11o9 11o9 11o6 11.6 11o5 11o5 11.6 11o6 IIo_ 11o8
24 21 12o2 12o2 13.1 1301

20 I 15o4 15o4 14.7 1407 14o5 1405 13.1 13ol 12.4 12o4 11.8 II*_ 11.5 1105 Iloo 11.6 11o9 11.9 11.1 11ol
26 21 10.9 10.9 11.2 11.2 11.8 ll.d

2_ I 15o4 1504 15.0 15.0 13.7 13.7 12o9 12.9 1202 12.2 11o6 ll.b 11.2 11.2 1006 10.8 10o4 10o4 10.2 10.2
28 21 1_0_ 10.2 10.4 10.4 10.9 1008 11.0 11.6

30 1 15.4 15o4 15.2 15.2 13.9 13.9 13.5 13.5 13.2 13o2 12o5 12.5 11o3 11.3 10.5 1005 10o0 10.0 9.7 9.7
30 21 9.t 9.b 9.7 9.? I0.0 10o0 10o4 10o4 11o2 11.2

32 1 15.4 150_ 14.6 l#.d 14.1 14.1 1300 13.6 12.3 12.3 110b 11o6 11.1 11.1 1007 1007 10.3 1003 90_ 908
32 21 9.5 905 9._ 9.4 9.5 9.5 9.9 9.9 10.6 10ob 12o8 12.8

_4 1 15.4 15.4 1407 14.7 14.1 14.1 13.4 13.4 12.3 12.3 11.8 11.8 11o5 11.5 10.3 10o3 9.7 907 904 904
34 21 9.3 9.3 9.4 9.4 9.9 9.9 10.0 10.0 9.9 9.9 I Ql_2 10.2 I100 II.0

30 1 I_.7 15.7 14.5 14.5 13.0 I_.6 13.9 13,9 12.4 12.4 14o5 14o5 I0._ 10.8 909 9.9 9.4 904 9o0 900
30 _I _._ d.5 U._ _.8 9.0 900 9.3 9.3 9.9 9.9 10.6 10.6 11o2 11.2 12.0 12.0

3d I 15o7 15.7 14.4 14.4 13.5 13o5 12o0 !300 12.8 12.8 12.2 12.2 II.I II.I I0.6 10.6 I0.9 I0.9 9._ 9.4
J_ 21 _._ d._ O.b 8.6 8.5 005 8._ 808 9._ 9.5 8.9 809 900 9.0 9.4 9.4 10.3 10.3



Table 5 - _"= .9

MATRIX ELEMENTS = -DLOGIO((EXACT - CUMPUTED)/EXACT) ; _CAL PANTS OF POLYRI COMPUTED RQQTS

( 1) ( 2) i 3) ( 4) ( _) ( O) ( T) ( 8) ( 9) (I0) (11) (12) (13) (14) (15) (16) (17} (18) (19) (20)

4 1 15.9 15. g 15.9 15.'J

b I 15.I 15.1 14.7 14.7 14.B 14o8

0 I 15.3 15.3 13.b 13-0 13o5 13o5 13.4 13o4

10 1 14.7 14.7 13.3 13,3 12.3 12o2 12.4 12o4 13o5 13.5

12 1 140_ 14,2 1209 12,9 ll.b 11,b 11,5 11.5 11.3 11,3 1201 12.1

14 1 14.1 14,1 12.7 12.7 II,2 11,2 11.3 11.3 11o0 11.0 10.9 10.9 11o7 11.7

lb 1 13.9 13.9 ll.b II.6 lO.b lO.b 9.5 g.5 9,2 9.2 9ol 9ol 10oi 10.1 10.4 I0.4

18 1 13.2 13.2 11.7 11.7 g,7 _.7 g.5 g.5 B.4 5.4 9.0 9.0 8.5 d.5 9.5 9.5 9.0 9.6

20 1 13o7 13.7 11o9 11.9 g.9 +09 8.5 8.5 _._ _.2 7.2 7.2 7.6 7.6 704 704 7.7 7.7 8.+ 806

,....,
hJ 22 1 13.0 lJ.b 10.5 10.5 9.2 _.2 B.4 8.4 7.6 7.6 6o7 6e7 7.2 7.2 6.4 @.4 6.8 6.B 7._ 7.a

22 21 _.7 007

24 I 13.4 13.4 10.4 10o4 0.7 0,7 704 7.4 o.6 6.6 b.l 601 5.b 5.6 601 6ol 5.6 506 600 600
24 _I 007 0.7 7.1 7.1

20 I I_.9 1_.9 I0.0 I0.0 0.3 _03 bed 008 5._ 5,8 5._ 502 407 4.7 4.2 402 4.6 4.6 _.7 407
20 21 407 4.7 5.3 5.3 6.5 _.5

28 1 13.2 13.2 IO.U I000 8.2 B.2 b,d 6._ 5.5 505 5.3 5.3 4.2 402 405 405 4oi 4.1 3.9 309
28 21 4.1 4.1 4.5 4.o 5,4 5.4 7,0 7,0

30 1 12._ 12.8 _.0 9.6 7,_ 7.g 0.3 003 5.1 5.1 4.1 4.1 3._ 309 2._ 2.B 2.7 2.7 20_ 2.5
30 21 2.3 203 2./ 2.7 3.5 305 3.b 300 4.5 4.5

32 1 12.0 12.0 905 905 7.0 706 7.9 7.9 4.b 4.0 3.7 3.7 2.9 209 2.4 2e4 2eO 2o0 _e_ 2o2
32 21 1o7 1o7 203 203 204 204 20_ 20d 4ol 4.1 _08 408

34 1 1_.0 1_o0 9,5 9.5 7.3 703 5ob 500 o.0 6,0 3.2 3.2 300 3.0 203 203 1.4 1.4 107 lo7
34 21 1.3 1.3 1._ 1.2 2.3 2.3 1.1 1,1 1.7 lo7 2,1 201 307 3,7

36 1 1_._ 1_°_ 10.7 10.7 701 7.1 5.5 505 4.2 4.2 3.1 3.1 3ol 3.1 1.9 log 1.2 1.2 1.3 103
3b 21 0.9 009 1o0 1.0 lo4 lo4 I.B 10_ 1.2 1.2 206 2oh 1._ 1.8 2oh 200



Table 6 - _"= .9

MATriX ELEMthTS = -DLOGIO((EXACT - COMPUT_D)/EXACT} ; IMAGINARY PARTS OF POLYRT COMPUTED RoOT

( I) ( 2} ( _} ( 4) ( 5} ( b) ( l) ( _} ( 9} (I0} (II) (12) (13) (14} (15} (16} (17} (18} (19} (20)

4 I 15.3 15,3 15.4 15.4

6 1 14.7 14.7 14.J 14.3 1_.9 14.9

8 1 I_._ 14.4 13,4 13.4 12,9 12.g 14.1 14.1

I0 1 15.5 15,5 12,6 12.6 12.4 12.4 12.0 12.0 12o4 12.4

12 1 16.5 16,5 12.2 12,2 11.5 II.5 I0,9 10.9 12.2 12o2 11.7 11.7

16 1 13.J 13*3 11,_ 11.8 12.0 12.0 10.7 10.7 I0,7 10.7 11,3 11.3 11.3 II.3

16 1 13._ 13.4 11.6 11.6 g,9 g.9 9.2 9.2 8._ 8.8 9.2 9.2 9.1 9.1 9.9 9.9

18 1 13.0 13.b lO.g 10.9 g.8 _,8 8.5 8.5 8,7 8.7 8.0 8.0 9.2 9.2 8.5 8.5 9.2 9.2

20 1 13.b 13,6 11,_ 11.2 9.5 S,5 d.5 8.5 7*4 7o4 8.0 8.0 6,d b,8 7o0 7.0 9.6 gob 8o4 8.4

22 1 13,0 13.0 11._ ll.d 9.1 g.l _.4 8.4 7.0 7.0 6.7 6.7 b,l b,1 6,b 6.0 6.7 b,7 7.d 7,0
22 21 _.0 d,O

24 1 13.2 13.2 10.4 i0.6 6.8 e.8 goo g.o 6.3 6.3 5.b 5,b 5.7 5.7 5.2 5°2 5.8 5.8 5,5 5,5
26 _I 5,9 5.9 7.1 7.1

2b 1 I_.4 12.4 9.9 9.9 8.1 8.1 O.U 6.8 5.6 5,6 6.7 6.7 6,3 6,3 6.5 4.5 3.g 3,g 6.0 6.0
26 21 6,_ 6.8 5.5 5.5 b.1 _.I

28 1 12,2 12.2 9,b 9.b 7.9 7,9 d.5 b.5 ?.b 7.b 4.6 6.4 6.6 6,6 3.6 3.6 3.6 3.6 4.I 4,1
_ 21 6o6 6,6 6.J 6,3 6.7 4.7 5.6 5.6

30 1 12,2 I_,2 I0,I 10,1 7,6 7,6 5,.g 5,g 4,8 4,_ 6,0 4,0 3,0 3,0 3,6 3,4 2,2 2,2 2,0 2,0
30 21 J,2 3,2 _,2 2,2 2,5 2,5 3,6 3,6 5,0 5,0

32 1 12,0 12,0 I0,0 I0,0 7,J 7,3 5,5 5,5 4,_ 6,5 3,6 3,6 2,6 2,6 2,0 2,0 2,0 2,0 1,5 1,5
32 21 1.d 1._ 1.5 1.5 2.0 _.0 3.0 3.0 3.3 3.3 4.6 6.6

36 1 12.0 12.0 9.0 9,b 7.9 7.9 5.4 5.4 J.8 3,8 3.5 3.5 _,3 2.3 Io5 1.5 1.4 1.6 0,_ 0,_
J6 21 0.3 0.3 0.9 0.9 0,8 O.d 0.9 0.9 1.2 1.2 1.9 1.9 2.b 2.6

3b 1 12.1 12.1 10.4 10.4 7.2 7,2 4.9 q.g 3,6 3.6 3.5 3.5 4._ 6.6 1.2 1,2 2.1 2.1 0.9 0.9
30 21 0.3 0,3 0.9 0.9 0.9 0.8 0.7 0.7 0.7 0.7 1,1 1.1 2.2 2.2 3.3 3.3



Table 7 - _"= 1.0

MAtrIX _L=MZ_IS = -_Lb_IO((_XACr - CUMPUTED)/ExAcT} ; _EAL PA_TS UF POLYR¥ COM_UTEO RUuTS

( 1) ( 2) ( J} { _} ( 5) ( b} ( 71 ( d} ( 9} (I0} (II) (12} ( 13} (14} (15) (16) (17} {18) 119) (20)

4 I d.J d.3 I5.t 15./

6 1 _.3 5._ 7._ 7._ 7.3 l._

1 _.q _.4 7.3 7.3 7.7 7.7 7.d 7.d

I0 I _._ _._ b._ o.2 5.5 5.5 10.3 10.3 10.5 10.5

12 I _._ _.4 5.4 5.4 5.1 5°1 5.1 5.1 4._ 4.8 5.0 5.0

14 1 0.5 0.5 5.4 5.4 0.o 8.6 7.7 7.7 d.l d.l 7._ t.O _.5 _.5

I0 1 _.5 _.o 5.; 5.; 4.3 4.3 3.7 3.7 3.3 3.3 3.3 3.3 3°5 3.5 4.1 4.1

ld I _.5 b.5 5.4 5.4 4.2 4.Z 3.4 3.4 3.0 3.0 2.9 2.9 5.2 5.2 5.8 5.B 6.1 b.l

20 1 _.5 _.5 5.4 5.4 3.7 3._ 2._ 2.9 2.5 Z.4 2.5 2.5 3.6 3.6 4,0 4.0 308 3.8 4, g 40g

22 1 _05 0.5 504 5.4 3.8 _0_ 2.8 208 Z.3 2.2 3.0 3eO 2o4 2.4 208 2.8 205 2.5 207 20722 21 J.O 3.b

24 1 _.5 do5 5.3 5.3 3ol 2.I 202 2ol lo5 I.I 1.0 Io3 1.0 1.3 1.1 lo3 102 lo2 1.4 101Z4 _1 1.C 1._ lo7 1o9

26 1 _._ _.b 503 503 300 200 2.1 200 1.5 1.2 le4 1.4 lo2 1.2 lo4 1.4 2.0 200 let 1,7
2b 21 1.4 1.4 1o5 1.5 2.1 2ol

2d I o._ _.b b._ 5._ _.d 207 1.7 lo4 100 lo7 0._ 2.1 0.8 2.5 0.9 107 1.0 lo3 1o3 I.I
2_ 21 1.7 1.0 2.4 100 1o9 101 20_ 1,_

30 I _.b _.6 5.2 5.2 2.5' 2.5 1.5 1.2 0.8 2.3 O.B lo5 008 l.b 008 4.2 Io0 I.2 IoZ lo2
JO _1 1._ 1.9 1.4 1.4 1.1 1.1 1.1 1,1 I._ 1,3

32 1 o.3 d.3 5.2 5.d 2.5 2.5 1.4 1.3 00_ l.b 0.7 1o2 0.7 I.I 007 1.2 0.8 1.5 009 3.5
32 21 1.0 1.9 l.l 1.2 i.7 0.9 1.4 O.d I.I 0.3 I.I 100

34 I _.2 802 5.I 5.1 3.7 2._ 0.9 1.3 O.b 0.0 O.b 0.6 007 0.7 0._ 0._ 0.6 1.2 O.d 2.2
J4 _I I.I I.I 2°0 007 1.2 1o2 1.4 1._ 1.0 100 0.9 009 009 0.9

36 1 8.1 _01 _.2 5.3 3.2 302 0._ 0.7 0.5 0.0 00_ 007 0.5 008 006 100 007 1._ 009 lo7
36 21 l.u i._ OoV 0._ 1o3 1.3 1.5 1.5 1.0 100 O._ Ood 007 0.7 0.7 0.7



Table 8 - _"= 1.0

MAI.IX CL=_N13 : -DLOG10((EX_CT - CdMPUTEO)/EXACT); INA_INARY PAHTS OF POLYRT C_PUTzD ROOT_

( 1) (2) ( _) ( 41 ( 5) (6) ( 7) ( _) ( 9} (I0) (II) (12) (13) (141 (15) (16} (171 (18) (19) (20}

4 1 15o7 1_07 7._ 70_

b 1 lbo7 15o7 1o.7 1507 loo7 15.(

8 1 15,7 15,7 15.7 15o7 15,7 1_.7 205 305

Iu 1 1_.7 1507 1507 15o7 l_=t 15.7 4.0 4og 4?9 4.9

12 1 I_07 1_07 I_07 15o7 15o7 15,7 15o7 15o7 15o7 15o7 15.7 15o7

14 1 I507 15o7 15o7 15o7 402 4.2 3.o 306 30_ 303 304 3°4 _o0 400

16 1 15.7 15.7 15o7 Ib.7 I507 15.7 15o7 15,7 15o7 15.7 15o7 15.7 15o7 15o7 15.7 15o7

18 1 15o7 15.7 15o7 1507 15.7 15o7 I_07 15o7 15o7 15.7 15o7 15o7 300 300 2.2 202 2.7 2.7

2_ 1 15o7 %'3.7 15.7 15.7 15o7 15.7 15.7 15o7 15o7 15.7 15o7 15,7 1._ lo3 lo2 lo2 1.4 104 2.1 2ol

2_ I 15.7 15o7 15.7 15.7 15o7 15.7 15o7 15o7 15o7 15.7 1o4 1o4 007 U07 005 005 006 006 009 009
22 21 10_ lo6

24 1 l_.r 15or 1_.7 1507 150r 15.1 15.7 15o7 15.7 1.1 lol 002 002 001 0ol 000 000 OoO 000 0ol
24 21 Ool 0,5 _._ 15o7

2b I I_.7 15o7 I_.7 15.7 15o7 15o7 15o7 15o7 I_07 15o7 000 Ood 001 001 000 000 000 000 deO 0.0
26 21 O.u 0.0 0.3 0.3 15o7 15o7

28 1 15.7 15.7 15o7 15.7 15.7 15o7 15o7 15o7 15.7 002 0.2 000 000 000 0.0 000 O.U U.O 0.0 000
2_ 21 O.d u.O O.O 000 0.0 003 003 15o7

30 1 15.7 15. 7 I_07 15.7 15o7 I_.7 I_07 Oob O.b 001 001 O.O 0._ 0.0 000 O.O 0.0 15o7 000 000
30 21 000 0._ 0.0 0.0 0.0 0.0 000 0.0 003 003

J2 1 15.7 15.7 15o7 15.7 15.7 15o7 15.7 0.6 006 001 0.I 000 000 000 000 0.0 0.0 000 000 0.0
32 _I Ood 000 0.0 0.0 0.0 000 0.0 000 000 000 000 15o7

_4 1 15.7 15.7 Io.7 15.7 I_.7 15.7 15.7 1507 000 OoU 000 000 000 0.0 15.7 0.0 000 000 0.0 0.0
34 21 0.0 0.0 O.O 15.7 0.0 0.0 0.0 000 0.0 0.0 000 0.0 000 0.0

3b 1 15.7 I_.7 15.7 15.7 1.7 107 15o7 0.0 OoO 000 OeU 000 000 OoO 000 0.0 000 000 000 0.0
3b 21 d.O 15.7 000 0.0 000 0.0 000 000 0.0 0.0 000 000 0.0 000 0.0 0.0



Tables 7 and 8 present results associated with equation 6 for _"= 1.0. These results are intended to

provide data at the limit of the breakdown of computation, that is, when roots are exactly coinci-
dent in the complex plane, or when damping is critical.

Data for over-damped systems is not presented, since all roots would then become real, and data

presented in Tables 1 and 2 would then become relevant to this situation.

In summary, the data presented shows that polynomials in power series form are adequate for

low- to moderate-order oscillatory systems which do not have any near-critically damped system

frequencies. For oscillatory systems with nearly critically damped system frequencies and for

non-oscillatory systems, a yellow caution flag is raised. The disturbing aspect of the data derived is

that numerical accuracy degrades gradually. Recognizing that users always attempt to push meth-

ods a little too far, it is inevitable that if a change in approach is not made, false conclusions will

inevitably result.

SYSTEM EQUATIONS, PRIMARY DATA

Specification of a mathematical simulation model begins at the point at which all input param-

eters are physically measurable items of data (e.g., length, mass, feedback gain, position, orien-

tation). The computing problems which lie along the path from this starting point to the need to

evaluate transfer functions in the complex frequency domain must now be examined.

The most extensively used representation for a feedback control system is the block diagram.

The parameters defined in each block of the block diagram, before reduction to canonical form, can

normally be considered as "primary data," or physically measurable items. From the block diagram
it is possible to set up both time and frequency domain equations which characterize system response.

If tile system is continuous, a system of first order ordinary differential equations of tile form:

X = AX + BU (8)

Y = CX (9)

can be directly set up, where X are state variables, Y and U are output and input variables, and tile

coefficient matrices A, B, and C have all elements defined in terms of primary data. If the sys-

tem is discrete, a system of first order finite difference equations of the form:

X (k+l) = AX (k) + BU (k) (10)
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Y(k) = CX(k) (11)

can be directly set up with all matrix elements defined in terms of primary data.

Sampled data systems do not lead as readily to continuous or discrete time equations. They can,

however, be defined in terms of linear mixed operation equations (see Reference 10) with all

matrix elements defined in terms of primary data. From this set of mixed operation equations it

is possible to set up, via a straightforward procedure, a system of first order finite difference equa-

tions of the form given by equations 10 and 11. This set-up procedure, however, requires the

computation of both a matrix exponential and an integral involving the matrix exponential. A

detailed study of the condition and of the relevant associated computational operations has been

done by van Loan, (see References 22, 30, 31, and 32). With respect to computational error, if

subroutine PADE (Reference 32) is used, then the user can define on input an acceptable bound for

the perturbation matrix E. The algorithm uses this data to set control parameters which guarantee
that results are exact for some matrix A + E. With respect to condition, van Loan (see Reference

30) concludes that "the matrix exponential problem is relatively well-conditioned when A [in eAt ]

is a normal matrix and more poorly-conditioned where A has a defective eigensystem." These

results do not answer the important question of whether poorly-conditioned eigensystems imply

sensitivity of the exponential. This is an area for future research.

One way to get a "feel" for whether or not A is poorly conditioned with respect to exponentiation

is to attempt to find the nonsingular transformation matrix ¢ which will reduce it to block diagonal

form (see method 18 in Reference 22). This can be done via subroutine BDIAG, developed and

given in Reference I, or by its extended version, namely BLOCK IT which is discussed in Reference

9. If the resultant blocking is poor, that is if the algorithm yields blocks much greater than one or

two and _ has a large condition number, with respect to matrix inversion, "beware."

Once the feedback control equations are defined in the form given either by equations 8 and 9 or

equations 10 and 11, numerous methods exi)st for obtaining transfer functions as polynomial

ratios in factored polynomial form. In a relative sense, poles are easy to obtain. They are simply

the eigenvalues of A which are obtainable via application of the EISPACK algorithms (Reference 27).

Computation of zeros is considerably more difficult, as proven by the profusion of "better" methods
in the literature, (see References 3, 4, 5, 6, 17, 18, 20, 23 and 26).

If the objective is the computation of transmission zeros; i.e., in a rough sense those complex
frequencies at which transmission through the system is blocked, then application of the QZ-method

is currently the best available (see Reference 18). For a definition of the QZ-method, see References
21 and 29, and for its subroutine code, see Reference 11.

If the objective is the computation of the zeros for particular transfer flmctions in the transfer

function matrix, any of the referenced methods can be used if the system is of low order. Caution

must be exercised if the system is of moderate to large order. Davison, in Reference 5, page 481,
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cautions against the use of Brockett's method (Reference 4). Davison's method (Reference 5) is

unsatisfactory because it is based upon introducing an arbitrarily large number into a matrix, the

eigenvalues of which are the sought-after zeros. This approach has the net effect of increasing the
norm of the matrix and hence the error associated with follow-on eigenvalue computation. Eigen-
values, computed via the QR method are exact for some matrix A + E where the norm of the

perturbation matrix E is proportional to the norm of A (see Reference 36, pages 353 and 367).

Sandberg and So's method (Reference 26) relies on a correct determination of numerator degree.

This is a difficult numerical task for moderate- to large-order problems; an incorrect determination

leads to incorrect results. Bollinger's method (Reference 3), Marshall's method (Reference 20), and

Patel's method (Reference 23) each rely upon the computation of the roots of a polynomial in

power series form. This, for moderate- to large-order systems, is an ill-conditioned computing

problem. Kaufman's method (Reference 17) is based upon solving the generalized eigenvalue
problem and can be readily implemented by use of the QZ-algorithm rather than Kaufman's

algorithm. If the QZ-algorithm is used results are exact for the problem (A + E) X = X (B + F) X

where bounds in both E and F can be defined. In application, the only problem the author has

encountered with this method is that eigenvalues known a priori to be identically equal to zero are

computed as "small non-zero numbers." For the problem of simulating moderate- to large-order

low frequency systems these small numbers tend to get mixed up with true small magnitude eigen-
values. This is a problem with the QZ-algorithm, however, and not with Kaufman's method.

Perhaps this problem can be corrected by prefacing the entrance into the QZ-method with a pre-

balancing step analogous to the prebalancing step associated with the QR-method and implemented
via subroutine BALANC (see Reference 27). The goal would be to isolate eigenvalues which can be

determined via zero error row-column permutations. In application, this is extremely useful since

the eigenvalues which are isolated have zero computational error. Frequently these are the zero fre-
quencies which, if computed, become troublesome small magnitude complex numbers. This is an
area of future study.

It is the author's opinion that for moderate to large order systems the zero-finding algorithm

NUMS contained in the DISCOS program (Reference 2, page 65, Vol. I and page B-141, Vol. II)is

the best available. It does not have any of the disadvantages cited above and has been successfully
applied on some very difficult poorly-conditioned problems for which the other methods above

have been less than satisfactory. An upgraded version of NUMS is currently in the DISCOS program

being distributed by COSMIC. An equivalent version can be easily created by simply using EISPACK
(Reference 27) and LINPACK (Reference 8) based subroutines where required. These were not

available when NUMS was originally coded.

The preceding remarks pertain when the so-called "state variable" approach is utilized. In general

application it is often desirable to obtain feedback control transfer functions via block diagram
algebra (see Reference 7). If this approach is applied, the net effect is to arrive at transfer functions

defined as ratios of polynomials defined in power series form. These are normally obtained via a

sequence of algebraic operations with functions of polynomials. As previously stated, finding the

zeros of a moderate- to large-degree polynomial in power series form is frequently an ill-conditioned
computing problem and should be avoided.
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If all blocks of the block diagram can be defined as low-order polynomial ratios in either the Laplace

variable s or the Z-transform variable z then it is possible to write directly from the block diagram a

higher order state variable equation of the form:

P (s) Y (s) = BU (s) (12)

where the elements of the square matrix P (s) are ratios of low-degree polynomials in power series

form and U (s) and Y (s) are input and output variables.

If the feedback system is sampled data, then a mixed operation higher order state variable equation
can be written of the form:

where again matrix elements are ratios of low-degree polynomials. In this case input must be

assumed constant over the sampling interval, hence U (z) and not U (s).

At present, there exists no general-purpose algorithm to go directly from equation 13 to an equation
of the form:

P (z) Y (z) = BU (z) (14)

However, it appears that a combination of the ideas presented in References 10 and 38 will lead to
the desired transformation. This is an area of future research.

In order to obtain the elements of the transfer function matrix G (z) or G (s) an inverse of a matrix

of polynomials in s or z must be computed. That is:

G (z) = P (z) 1 (15)
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On the bottom line this calls for the need to compute the zeros of a series of determinantal equa-
tions, in which matrix elements are low-order polynomials in power series form. It should be noted

that, at this point, polynomial coefficients can still be considered as "primary data."

Let the matrix of rational polynomials, for which the determinant must be computed, be given by:

H (z)

d (z) (16)

where d (z) is the polynomial which is the least common denominator and H (z) is a square matrix

of low-degree polynomials in power series form. If r is the degree of the highest degree polynomial
in H (z), then it is rather straightforward to write:

det [H (z)] = det [zr Cr + zr-1 Cr. 1 + • • • + Co ] = 0 (17)

where the order of each of tile matrices Co, C I , • •., Cr equals N, the order of H (z). Moler and

Stewart (Reference 21) point out that this is the "X-matrix" problem. On page 242 they show that

it is solvable via the QZ-algorithm. Their approach, however, demands that a generalized eigen-

value problem of order N(r + I) be solved. In application, it is frequently possible to set up a
generalized eigenvalue problem of considerably lower order, as follows.

Step 1. Scan each column of the matrix H (z) and record the degree of the highest degree poly-
nomial. Let:

ri = degree of tfighest degree polynomial in column i;

if ri = 0, reset it equal to 1.

Step 2. View z as a differential operator and consider the set of transform equations:

IilH1N z liXlIll1 (Z) " HNN (Z)_ _X N (z)
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where each of the state variables in X (z) are higher order state variables. This equation can be
rewritten as a set of first order state variable equation of the form:

A X (z) + zBX (z) -- 0 (19)

where tim order of system of equations is R = r 1 + r 2 + • • • + rN. This algorithm is best illustrated
by a simple example. Consider the system:

[3z3Z2o0bZ2bo!{XlZ1 {!Ic4 z4 +c 3 z3 do z X2 (z) = (20)

z2 +e 1 z+e 0 fo 9s zs z4 'e2 + 94 + 90 X3 (z)

Let:

X,, (z) = X1 (z) X3, (z) = X 3 (z)

Xl 2 (z) = zX 11 (z) X32 (z) = zX 31 (z)

X13 (z) = zX 12 (z) Xaa (z) = zX32 (z)

X14 (z) = zXla (z) X34 (z) = zXa3 (z)

X3s (z) = zX34 (z)

X21 (z) = X2 (z) (21)
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Directly substitute into equation 32 to obtain:

_ ¢
-1 0 0 0 0 0 0 0 0 0 zX 1_ (z)

0 -1 0 0 0 0 0 0 0 0 zXl2 (z)

0 0 -1 0 0 0 0 0 0 0 zX1 3 (Z)

0 0 % 0 0 . 0 b2 0 0 0 zXl4 (z)
0 0 0 c4 0 1 0 0 0 0 zX21 (z)
0 0 0 0 0 -1 0 0 0 0 zX31 (z)

0 0 0 0 0 0 "l 0 0 0 zX32 (Z)

0 0 0 0 0 0 0 -1 0 0 zX3 3 (Z)

0 0 0 0 0 0 0 0 -1 0 ZXa4 (z)

0 e2 0 0 0 0 0 0 0 95 zX35 (z)m m

-6 I o o o o o o o o- i o

0 0 1 0 0 0 0 0 0 0 I X12 (z) 0

0 0 0 1 0 0 0 0 0 0 X13 (z) 0

a o 0 a2 0 0 b0 0 0 0 0 X14 (z) 0

0 0 0 c 3 d o 0 0 0 0 0 X2 , (z) 0

+ 0 0 0 0 0 0 1 0 0 0 ) X3a (z) = 0 (22)

0 0 0 0 0 0 0 1 0 0 i X32 (z) 0

0 0 0 0 0 0 0 0 1 0 X3 3 (Z) 0

0 0 0 0 0 0 0 0 0 I X34 (z) 0
eo e 1 0 0 fo g o 0 0 g4 0 X3s(Z) 0

m

The important point to note here is that we have arrived at the need for solving a generalized

eigenvalue problem via a trivial zero-computational-error operation.

The eigenvalues of equation 22, which is of the form of equation 19, are the values of z which

satisfy the determinantal equation 17:

det [H (z)] = 0 (17)

These can then be used to rewrite this equation in the desired factor polynomial form:

det[H(z)] = G*(z-z l)(z-z2). • .(z-z M) = 0 (23)

22



Where M _< R and where G* is obtained by evaluating both sides of equation 23 for any value of z

not equal to an eigenvalue and solving directly for G*.

M is determined by examining the computed values of zj; j = 1, 2, • • ", R. M is equal to the num-
ber of computed eigenvalues "not" at numerical infinity in the complex plane (see Reference 21,

page 241 ).

REDUCED ORDER SYSTEM EQUATIONS

In References 1 and 9, it is shown that a computational algorithm has been developed which can be

used to compute the transformation matrix q_which will reduce a real nonsymmetric matrix A to

block diagonal form. This can be expressed as:

4-1 A_b = diag (B 1, B2, • • ", B k) (24)

where k is the number of blocks. The transformation matrix is guaranteed to be nonsingular, and

all elements of it are real. Since each block is quasi-upper triangular, usually 1 × 1 or 2 × 2, each

block and their associated columns of 4_can be interpreted as system frequencies and quasi-system

modes. In brief consider the problem:

= AX + BU (25)

Find 4_and define the coordinate transformation:

X = q_q (26)

Direct substitution leads to:

Cl = _b'x A_bq+ _b"1 BU (27)
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or by equation 24.

= diag (BI , B2, • • • , BK) q +q_-I BU (28)

Transform the equations and obtain:

q(s) = [s_]- diag (BI, • • ", BK)]-I 4 "1 BU (S) (29)

where {] is the unit diagonal of appropriate dimension.

Then back transform and obtain

X (s) = _ diag [(s_- B, )-1, ($1_]- B2)'1, " " ", (s_]- BK)" ] _b" BU (s) (30)

where partial inversion of the block diagonal matrix has been carried out.

Making use of the fact that the elements of _ define system mode observability and that the ele-

ments of q_-i define system mode controllability, it is possible to utilize engineering judgement to
write reduced order transfer functions as partial fraction expansions of the form

L Nj (s)
G (s) = Y] (31)

j=l Dj (s)

where L _< K.

Normally, the degree of all Dj (s)is one or two with the degree of Nj (s) being less than or equal to the
degree of Dj (s). Larger order blocks lead to larger degree polynomials, which can be determined via
the "method of Leverrier" presented first in 1840 (Reference 14, page 166). The method is outlined in
Appendix A. When using the method of Leverrier it is essential to bear in mind that this method is

not recommended for "large matrices," since it requires too many operations and tends to be
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numerically unstable (Reference 14, page 149). The method of Leverrier is applicable, however, for
the determination of the matrix of polynomials defined by:

due to the fact that each matrix B. is of low order. If the matrix B. is moderate to large order,l l
blocking is by definition "poor." This normally implies that the basic computing problem is ill-

conditioned. This does not imply that the physical system is ill-conditioned. It does, however, imply

that the analyst, through poor engineering judgment, has set up a set of system dynamics equations

which defy solution. A few common examples of poor engineering judgment are:

• An attempt to model system response frequencies which differ by many orders of magnitude;

• A poor choice of physical units. Ideally, all numbers of significance in the computing prob-

lem should be of comparable order; and

• A poor choice of state variables such as, for example, using a Euler angle sequence which is

subject to "gimbal lock," using relative rather than absolute coordinates for rate and/or

displacement measures or vice versa.

When blocking is poor, "stop." The analyst is advised to step back and to reexamine the basic
formulation which led to the troublesome computing problem. It is usually a much simpler prob-

lem to reduce frequency spectrum, change units, or use a different set of state variables than to

fight an ill-conditioned computing problem.

Again, the objective is to write the transfer function G (s) given in equation 31 as a truncated

partial fraction expansion as a ratio of polynomials both given in factored polynomial form. The

denominator is the least common denominator; since all Bi in equation 29 are quasi-upper triangular
it is simply the root product of all system frequencies not truncated out. The computation of the

numerator polynomial, in factored polynomial form, can be computed via the QZ-algorithm by
recognition of the fact that:

- 0 D2 (s) D a (s) D L (s) 1-

D 1 (s) 0 D 3 (s) D L (s) 1

D l (s) D 2 (s) 0 D E (s) 1
det (32)

D 1 (S) D 2 (s) D a (s) 0 1

N 1 (s) N 2 (S) N 3 (s) N L (s) 0
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equals the numerator polynomial exactly. But, this is simply a determinantal equation involving a

matrix of polynomials and hence is solvable via the QZ-method and algorithm presented in the

previous section. The validity of the fact that the determinant defined by equation 32 equals the

numerator polynomial for the partial fraction expansion exactly defined by equation 31 can be

easily verified by expanding the determinant in terms of the cofactors ofN 1 (s),N 2 (s), • ° ° , N L (s).

CONCLUSION

An attempt has been made to summarize a large body of numerical error analysis literature in

a language familiar to controls engineers. If your computing problems are of moderate-to large-

order, beware. The algorithms that you now use with confidence for low-order systems may not be

applicable.
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APPENDIX A

THE METHOD OF LEVERRIER





THE METHOD OF LEVERRIER

Use of good engineering judgment normally leads to a well-conditioned computing problem with

good blocking characteristics. Consider the need to compute the matrix (s I_ - B)a , where B is

assumed low order, equal to n. The method of Leverrier is given as follows (see Reference 14,
page 166):

Step 1. Write the adjoint of the matrix (S _] - B) as:

(s'_-B) A = C O s n'l -C 1 s n'2 + • • • + Cn. a

Step 2. Make use of the equations

Co= 11]

C a = ")'a_J- C0 B

C2 = _'2"_-C 1 B

Cn_1 = ")'n_l"_ - Cn. 2 B

Cn_1 B = ')'n _

and

trace [CjB] = 0 + 1) ")'j+L j =0, _..... n-

to compute all coefficient matrices Co, C a.... , Cn. 1. This can be done iteratively by first using

CO to compute _,,, then Ca , "/2, C2, et cetera.

Step 3. Make use of the fact that all B are quasi-upper triangular, and let:

SI _ S2 _ • • • Sn

be the n eigenvalues of B. The desired matrix inverse is thus given by:

Cosn'a -C 1 s n-2 + • • ° + C
(S'[_] - 8) -1 = -- rl-I

(s - s_) (s - s2) • • • (s - sn)

Again, all B are of low order and hence the power series form of polynomials is acceptable.

A3











1. ReportNo. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.
NASA TP-1814

4. Title andSubtitle 5. Report Date
Pitfalls and Guidelines for the Numerical Evaluation June 1981

of Moderate-Order System Frequency Response 6. Performing Organization Code
712

7. Author(s) 8. Performing Organization Report No.
Harold P. Frisch 81 F0042

9. Performing Organization Name and Address 10. Work Unit No.

Goddard Space Flight Center

Greenbelt, Maryland 20771 11. Contract or Grant No.

13. Type of ReportandPeriodCovered

12. SponsoringAgencyNameandAddress
National Aeronautics and Space Technical Paper
Administration

Washington, D.C. 20546 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The design and evaluation of a feedback control system via frequency response methods relies

heavily upon numerical methods. In application, one can usually develop low-order simulation

models which for the most part are devoid of numerical problems. However, when complex feed-

back interactions, for example, between instrument control systems and their flexible mounting

structure, must be evaluated, simulation models become moderate to large order and numerical

problems become common. The fundamental reason for this is that as system order enters the

range of about 20 to 200, many popular tried and true methods are subject to severe numerical

problems. An aftempt is made in this paper to summarize a large body of relevant numerical error

analysis literature in a language understandable to nonspecialists. The intent is to provide engi-

neers using simulation models with an "engineering feel" for potential numerical problems without
getting intertwined in the complexities of the associated mathematical theory. Guidelines are also

provided by suggesting alternate state-of-the-art methods which have good numerical evaluation
characteristics.

17. KeyWords(Selectedby Author(s)) 18. Distribution Statement
Analytical and Numerical Unclassified - Unlimited

Methods, Guidance and Control,
Spacecraft Simulation

Subject Category 18

19. SecurityClassif.{of this report) 20. SecurityClassif.{of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 37 A03
i

*ForsalebytheNationalTechnicalInformationService,Springtield,Virginia22161.

NASA-Langley, 1981



3 1176 00503 8790 i



National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid

Space Administration r _ National Aeronautics andSpace Administration
u " uJ NASA-451

Washington, D.C. LANGLEY RESEARCH CENTER_0_,6 ([[11[[[IIII[[IIJ

Official Business 3 1176 00503 8790
Penalty for Private Use, $300

NASA POSTMASTER: If Undeliverable (Section 1$8Postal Manual) Do Not Return


	01319
	01320
	01321
	01322
	01323
	01324
	01325
	01326
	01327
	01328
	01329
	01330
	01331
	01332
	01333
	01334
	01335
	01336
	01337
	01338
	01339
	01340
	01341
	01342
	01343
	01344
	01345
	01346
	01347
	01348
	01349
	01350
	01351
	01352
	01353
	01354
	01355
	01356
	01357
	01358
	01359
	01360
	01361
	01362
	01363
	01364
	01365
	01366


